A q-analogue for bisnomials coefficients and generalized Fibonacci sequence

Athmane Benmezai

Univ. Dely Brahim, Fac. Eco. \& Manag. Sc., ANGE \& RECITS Lab., DG-RSDT
Rue Ahmed Ouaked, Dely Brahim, Algiers, Algeria
athmanebenmezai@gmail.com

For $s \geq 1$, bi ${ }^{s}$ nomials coefficient denoted by $\binom{n}{k}_{s}$ are considered as extension of binomial coefficients $\binom{n}{k}$ and are obtained by the multinomial expansion (see [2])

$$
\begin{equation*}
\left(1+x+x^{2}+\cdots+x^{s}\right)^{n}=\sum_{k \geq 0}\binom{n}{k}_{s} x^{k} \tag{1}
\end{equation*}
$$

Andrew and baxter [1] defined a q-analogue for bi^{s} nomials coefficients by the q-binomials coefficients as follow

For $\alpha=0,1, \ldots, s$

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{s}^{(\alpha)}=\sum_{j_{1}+j_{2}+\cdots+j_{s}=k}\left[\begin{array}{l}
n \\
j_{1}
\end{array}\right]\left[\begin{array}{c}
j_{1} \\
j_{2}
\end{array}\right] \ldots\left[\begin{array}{c}
j_{s-1} \\
j_{s}
\end{array}\right] q^{\sum_{r=1}^{s-1}\left(n-j_{r}\right) j_{r+1}-\sum_{r=s-\alpha}^{s-1} j_{r+1}}
$$

Our communication will proceed according to the following steps;
We establish a new expression for the bi^{s} nomials coefficients.
According this expression we define a q-analogue of bi^{s} nomials coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}^{(s)}$.

With this new definition, we obtain a q-analogue of formula (1).
We suggest a generalized q-Fibonacci sequence which gives for $s=1$ a Cigler's q-Fibonacci sequence [3].

References

[1] G. E. Andrews, J. Baxter, Lattice gas generalization of the hard hexagon model III q-trinomials coefficients, J. Stat Phys., 47, (1987), 297-330.
[2] H. Belbachir, S. Bouroubi, A. Khelladi, Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Annals Mathematicae et Informaticae, 35, (2008), 21-30.
[3] J. Cigler, A new class of q-Fibonacci polynomials, Electronic J. Combinatorics 10, (2003), Article R19.

